

Product description

Polyamide 6

Unreinforced, toughened, PA6, performance polyamide

SenTherm 301-02 HF 1 is a high-performance, high flow thermally conductive resin for injection moulding

Product applications

SenTherm 301-02 HF 1 is a highly flowable injection moulding grade, with consistent thermal conductivity. This grade is suitable for both automotive and LEDS parts offering a cost-effective, low carbon solution for complex shapes.

Product Information

Resin Identification

PA6

ISO 1043

Rheological properties¹⁾

Properties	Method	Unit	Typical Value*
<i>Mould shrinkage, parallel²⁾</i>	ISO 294-4, 2577	%	0.5
<i>Mould shrinkage, transversal²⁾</i>	ISO 294-4, 2577	%	0.6

Characteristics¹⁾

Properties	Method	Unit	Typical Value*
Density	ISO 1183	Kg/m ³	1360
Melt flow rate 275°C 5kg	ISO1133/T	g/10 min	29.5
Thermal conductivity (Injection moulded)	ASTM D7984	W/mK	1.5
Thermal conductivity (In- plane)	ISO22007	W/mK	5.5
<i>Thermal conductivity (Compression moulded)</i>	ASTM D7984	W/mK	3.0
Tensile modulus (50mm/min)	ISO 527	MPa	2225
Tensile strength (50mm/min)	ISO 527	MPa	58
Strain at break	ISO 527	%	4

***Values in italics are estimated**

Date: 03/02/2026

Characteristics¹⁾

Properties	Method	Unit	Typical Value*
Flexural modulus	ISO 178	MPa	4900
<i>Charpy impact (23°C)</i>	<i>ISO 180/1A</i>	<i>kJ/m²</i>	15

Injection¹⁾

Properties	Unit	Typical Value*
Drying recommended		Yes
Drying temperature	°C	80
Drying time, Dehumidified oven	Hours	4
Process moisture content	%	0.1
Melt temperature	°C	260
Min melt temperature	°C	250
Max melt temperature	°C	270
Min mould temperature	°C	70
Max mould temperature	°C	90
Ejection temperature	°C	190

- 1) The information stated on technical data sheets should be used as indicative only for material selection and not utilised for specifications or part and tool design.
- 2) Measurements have been estimated from moulded laboratory parts; actual shrinkage may be outside these parameters. This is dependant on mould conditions and parameters. Our recommendation is using legacy tooling before cutting on a new moulding tool.

Disclaimer

The information provided in this document is given in good faith and is believed to be accurate and to the best of our knowledge at the time of publication. However, SenTherm makes no representations or warranties, express or implied, regarding the accuracy, completeness, or reliability of the information contained herein. All values stated are typical and should not be considered as specification limits. Actual values may vary.

SenTherm assumes no liability for the use, processing, or application of this material. It is the responsibility of the buyer to conduct independent testing and evaluation to determine the suitability of the material for its intended use. No information contained herein should be construed as granting any licence or right under any patent or intellectual property. No statement regarding potential applications of the material, which is patent pending, shall be interpreted as an inducement to infringe any patents. To the utmost extent permitted by law, SenTherm disclaims all liability for any direct, indirect, incidental, or consequential damages arising from the use of this information or the material described.